TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG) or Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. PHGs are set by the California EPA.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring, reporting and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MDL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (ug/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picograms per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

For questions or concerns about your drinking water you may attend our monthly meeting held the 2nd Wednesday of each month or you may contact Tim Heck (530) 275-3002

2022 Consumer Confidence Report

Mountain Gate Community Services District

Here at Mountain Gate, we want you to understand the efforts we make to provide you with a safe and dependable drinking water supply. We continually monitor our drinking water quality and strive to protect our water resources. We regularly test our drinking water for many different constituents as required by State and Federal Regulations. This "Water Quality Report" includes those constituents that were **detected** in 2022 and may include earlier monitoring data.

Our drinking water is supplied by a **surface** water source (Shasta Lake Intake) and three groundwater wells (Bass Wells 01A, 02 & 03). The well 01A was operational and running for six months and well 02 was operational and running for four months.

The wells were evaluated by the county in May 2002, to determine if there were possible contaminating activities that might compromise the quality of the water. At the time, there were no contaminants detected in the water supply, however the sources were still considered vulnerable to a high density of septic systems (more than 1 per acre) and chemical and petroleum processing and storage in the vicinity. As of January, 2003, Shasta Lake Intake was considered vulnerable to contaminants from water treatment processes and natural deposits. Copies of the reports are available from our office upon request.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial contaminants (such as viruses and bacteria) that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic contaminants (such as salts and metals) that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses;

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems

Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Board regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Please note that drinking water, including bottled water, may reasonably be expected to

contain at least small amounts of some contaminants. **The presence of contaminants does not necessarily indicate that the water poses a health risk.** More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

US EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Mountain Gate is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701)or at http://www.epa.gov/lead.

Este informe contiene información muy importante sobre su agua beber. Favor de comunicarse Mountain Gate a 275-3002 para asistirlo en español. These tables show only the drinking water contaminants that were *detected* during the most recent sampling for each constituent. The State Water Resources Control Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked and explained below.

17									RM BACTERIA
Microbiological Contaminants	Highest No. of detections	No. of months in violation	MCL				MCLG		Typical Source of Bacteria
E. coli	(in the year) O	0	(a)	(a)			0		Human and animal fecal waste
(a) Routine and repea routine sample or s								fails to tak	ke repeat samples following <i>E. coli</i> -positive
Ţ	ABLE 2 - SA	MPLING RES	ULTS S	HOWING	THE DE	TECTIO	on of	LEAD A	ND COPPER
Lead and Copper	No. of samples collected	90 th percentile level detected		o. sites ceeding AL	AL PHO		No. of schools requesting lead sampling		Typical Source of Contaminant
Lead (ppb) 2021	10	2.3	1	None	15 0.2		None		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm) 2021	10	0.111	1	None 1.3		0.3	Not Applicable		Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TAE	BLE 3 - SAMP	LING F	RESULTS F	OR SO	DIUM A			
Chemical or Constituent	Sampl		Level Detected			MCL		PHG	Typical Source of Contaminant
(and reporting units)	2020-20			4.6 - 8	ons			(MCLG)	Salt present in the water and is generally
Sodium (ppm) Hardness (ppm)	2020-20		6.3 137			none		none	naturally occurring Sum of polyvalent cations present in the water, generally magnesium and calcium,
ТАВІ			TAMINI						and are usually naturally occurring ATER STANDARD
							1	PHG	
Chemical or Constituent (and reporting units)	Sample D	ate Level De	tected	Range of Detection		MCL [MRDL]		MCLG) IRDLG]	Typical Source of Contaminant
Nitrate (ppm)	2021-20	22 0.8	0.8			10 1		10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Barium (ppm)	2020-20	22 8.7	8.7		L 1			2	Discharges of oil drilling wastes and fron metal refineries; erosion of natural deposits
Lead (ppb)	2020-2022		0.2		A	AL = 15 0.2		0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Haloacetic Acids (ppb)	07/28/2	28/22 9.6				80	N/A		Byproduct of drinking water disinfection
Total Trihalomethanes (ppb)	07/28/2	22 24.	9			60	N/A		Byproduct of drinking water disinfection
Radium 228 (pCi/L)	2017-20	21 0.3		ND – 0.6		5	0.019		Erosion of natural deposits
TABLE	5 - DETECTIO	ON OF CONTA	MINA	NTS WITH A	A <u>Secc</u>	ONDAR	<u>y</u> dri	NKING V	VATER STANDARD
Chemical or Constituent (and reporting units)	Sample D	ate Level De	tected	ed Range of Detections		SMCL	PHG (MCLG)		Typical Source of Contaminant
Total Dissolved Solids (ppm)	2020-20	22 203	203		5 1000			None	Runoff/leaching from natural deposits
Chloride (ppm)	2020-20	22 3.8	3.8			500	None		Runoff/leaching from natural deposits; seawater influence
			•				None		Internal corrosion of household plumbing
Copper (ppm)	2020-20	22 0.00		ND - 0.00	5	1.0		None	systems; erosion of natural deposits; leaching from wood preservatives
)2	ND - 0.00 137 - 463		1.0 1600		None None	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in wate seawater influence
Specific Conductance (µS/cm		22 299)2)						systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in wate
Specific Conductance (µS/cm	n) 2020-20	22 299 22 32.)2)	137 - 463		1600		None	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in water seawater influence Runoff/leaching from natural deposits;
Specific Conductance (µS/cm Sulfate (ppm) Odor (Units)	n) 2020-20 2020-20	22 299 22 32. 22 1)2) 5	137 - 463 3 - 70	3	1600 500		None None	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in wate seawater influence Runoff/leaching from natural deposits; industrial wastes
Specific Conductance (µS/cm Sulfate (ppm) Odor (Units) Zinc (ppm)	1) 2020-20 2020-20 2020-20 2020-20 2020-20 2020-20 2020-20	22 299 22 32.9 22 1 22 0.000	9 5 03	137 - 463 3 - 70 ND - 1 ND - 0.02	3	1600 500 3 5.0		None None None None	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in water seawater influence Runoff/leaching from natural deposits; industrial wastes Naturally-occurring organic materials Runoff/leaching from natural deposits;
Specific Conductance (µS/cm Sulfate (ppm) Odor (Units) Zinc (ppm) Tabl	n) 2020-20 2020-20 2020-20 2020-20 2020-20 e 10 - SAMF	22 299 22 32. 22 1 22 0.00 PLING RESUL	2 5 03 TS SH (137 - 463 3 - 70 ND - 1 ND - 0.02	BATME Direct	1600 500 3 5.0 ENT OF filtration		None None None FACE WA	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in water seawater influence Runoff/leaching from natural deposits; industrial wastes Naturally-occurring organic materials Runoff/leaching from natural deposits; industrial wastes ATER SOURCES
Zinc (ppm) Tabl Treatment Technique ^(a) (Type Turbidity Performance Standa (that must be met through the	n) 2020-20 2020-20 2020-20 2020-20 e 10 – SAMF e of approved filt ards ^(b) e water treatme	22 299 22 32.1 22 1 22 0.000 PLING RESUL tration technolog ent process)	2 5 03 TS SH(gy used)	137 - 463 3 - 70 ND - 1 ND - 0.02	EATME Direct <u>Turbid</u> 1 – Be month 2 – No 3 – No	1600 500 3 5.0 ENT OF filtration lity of the e less that the exceeded of exceeded to excee	SUR n e filtere an or ed d 1.0 N d 1 NTU	None None None FACE WA d water m qual to 0.3 TU for more	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in water seawater influence Runoff/leaching from natural deposits; industrial wastes Naturally-occurring organic materials Runoff/leaching from natural deposits; industrial wastes ATER SOURCES
Specific Conductance (µS/cm Sulfate (ppm) Odor (Units) Zinc (ppm) Tabl Treatment Technique (a) (Type Turbidity Performance Standa	n) 2020-20 2020-20 2020-20 2020-20 e 10 – SAMF e of approved filt ards ^(b) e water treatme	22 299 22 32.1 22 1 22 0.000 PLING RESUL tration technolog ent process)	2 5 03 TS SH(gy used)	137 - 463 3 - 70 ND - 1 ND - 0.02	EATME Direct <u>Turbid</u> 1 – Be month 2 – No 3 – No	1600 500 3 5.0 ENT OF filtration filtration lity of the e less that h. ot exceed ot exceed ot exceed	SUR n e filtere an or ed d 1.0 N d 1 NTU	None None None FACE WA d water m qual to 0.3 TU for more	systems; erosion of natural deposits; leaching from wood preservatives Substances that form ions when in wate seawater influence Runoff/leaching from natural deposits; industrial wastes Naturally-occurring organic materials Runoff/leaching from natural deposits; industrial wastes ATER SOURCES

(a) A required process intended to reduce the level of a contaminant in drinking water.
 (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.